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ABSTRACT

Purpose: This collaboration of five established European gene expression labs investigated the potential
impact of culture conditions on the transcriptional response of peripheral blood to radiation exposure.
Materials and methods: Blood from one healthy donor was exposed ex vivo to a Cobalt 60 source to
produce a calibration curve in addition to four unknown doses. After exposure, the blood samples
were either diluted with RPMI medium or left untouched. After 24-h incubation at 37 �C the diluted
blood samples were lysed, while the undiluted samples were mixed with the preservative RNALater
and all samples were shipped frozen to the participating labs. Samples were processed by each lab
using microarray (one lab) and QRT-PCR (four labs).
Results: We show that although culture conditions affect the total amount of RNA recovered
(p< .0001) and its integrity (p< .0001), it does not significantly affect dose estimates (except for the
true dose at 1.1Gy). Most importantly, the different analysis approaches provide comparable mean
absolute difference of estimated doses relative to the true doses (p¼ .9) and number of out of range
(>0.5Gy) measurements (p¼ .6).
Conclusion: This study confirms the robustness of gene expression as a method for biological
dosimetry.
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Introduction

In the past few years, gene expression exercises have illus-

trated the potential of gene expression for use in biodosime-

try (Badie et al. 2013; Rothkamm et al. 2013; Abend et al.

2016). Dose assessment in irradiated blood samples can be

obtained by either using dose predictive gene or exon signa-

tures (Paul & Amundson 2008; Kabacik et al. 2011; Boldt

et al. 2012; Knops et al. 2012; Lucas et al. 2014; Macaeva

et al. 2016) or by monitoring the modification of transcrip-

tion of single radiation-responsive genes like ferredoxin

reductase (FDXR) (Manning et al. 2013; Abend et al. 2016).

The first gene expression intercomparison exercise of the

Realising the European Network of Biodosimetry (RENEB) con-

sortium involving four different European labs was performed

using blood samples from five healthy donors using an ex

vivo in vitro whole-blood cell culture model (Abend et al.

2016). It provided important information on methodological

and inter-individual variance in gene expression for specific

radiation-responsive genes. For patient blood collection,

PAXgene tubes were used in which blood cells are lysed

immediately, allowing intra-cellular RNA stabilization. The

tubes are convenient for simple collection, transport, and

storage of blood. During this exercise, dose estimates were

provided by some of the participating labs within hours of

receiving the samples with methodological variance among

dose estimates being low (CV �10% for technical replicates).

After having produced robust calibration curves, the cru-

cial question arose of how relevant the ex vivo generated

gene expression data generated are to the in vivo data.

Amundson et al. first measured in vivo responses in blood

from patients undergoing total body irradiation and con-

firmed the transcriptional activation of several previously

identified biomarker genes (Amundson et al. 2004). In the

recent work by Abend et al. (2016), the question of validity

of an in vitro-constructed calibration curve for in vivo dose
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estimation was addressed by assessing the dose to the blood

of prostate patients treated by radiotherapy. Dose estimates

from radiotherapy-treated, locally exposed prostate cancer

patients could completely discriminate exposed from unex-

posed samples. Nevertheless, all Ct-values obtained from in

vivo blood samples were up to 7-fold below the unexposed

ex vivo in vitro values of the calibration curve obtained by

quantitative reverse transcriptase PCR (QRT-PCR) clearly indi-

cating a discrepancy between in vivo and in vitro situations.

It necessitated introducing an in vitro to in vivo correction

factor which was lab dependent to provide the dose

estimates.

In ex vivo studies, several protocols have been used

such as cultured peripheral blood mononuclear cells

(PBMC) (Dressman et al. 2007; Meadows et al. 2008, 2010;

Sprung et al. 2011; Boldt et al. 2012; Knops et al. 2012;

Riecke et al. 2012; Macaeva et al. 2016), cultured whole

blood diluted with media (Badie et al. 2013; Brzoska and

Kruszewski 2015, Abend et al. 2016) or undiluted whole

blood (Manning et al. 2013). However, none of these stud-

ies have addressed the role of blood culture methods dur-

ing the incubation time at 37 �C following radiation

exposure. Such a comparison would allow the impact, if

any, on the transcriptional response to be studied. A wide

range of methodologies, reagents and analysis techniques

are available for studying gene expression and it is import-

ant to identify external factors, apart from radiation expos-

ure, which may cause ‘artificial’ transcriptional modifications

in ex vivo studies, like culture conditions or the type of

analytical approaches; this is particularly relevant for the

calibration curves generated as they are the reference used

for in vivo dose assessments. This concern was briefly

addressed in Macaeva et al. (2016), where they compared

gene expression levels in their study to others in the lit-

erature and found that despite varying cell types, radiation

quality, dose rate, a core signature of genes was found in

common among the studies. However, the role of ex vivo

blood preservation has yet to be addressed.

In the present study, we study the impact of blood culture

methods following radiation exposure on the expression of

radiation-responsive genes and the effect on dose estimation

of blinded samples. The role of the protocol for blood preser-

vation during the experiments in mimicking as closely as

possible in vivo conditions and its impact on inter-laboratory

comparisons is an important factor worth addressing. The

addition of culture medium supplements could potentially

influence transcriptional changes and artificially modify the

response to radiation compared to the natural in vivo

response. As a consequence, this could introduce differences

between participating labs and most importantly affect the

shape of the calibration curves, hence providing inaccurate

dose estimates. The use of different platforms may also intro-

duce variability in the dose estimates provided, however, in a

recent paper by Macaeva et al. (2016), gene expression pro-

files from different platforms were used and very comparable

gene signatures were obtained. Also, in the first RENEB exer-

cise (Abend et al. 2016) different platforms were also used

and again comparable results were obtained. The purpose of

this exercise was not to use similar platforms hoping for simi-

lar estimates, but rather to use different platforms and inves-

tigate which provides the most accurate estimates. The fact

that all laboratories provided dose estimates which are in

good agreement with each other is a strength and, by itself,

demonstrates the robustness of gene expression as a method

for biological dosimetry.

This work is the second study on gene expression organ-

ized and conducted under the umbrella organization RENEB.

This exercise was conducted by the same four European labs

as in the first RENEB exercise with the addition of the

Institute of Nuclear Chemistry and Technology (INCT) in

Poland (Table 1), thus increasing the assesment of variabil-

ities among labs.

Table 1. General characteristics of technical procedures utilized and experiences of the contributing institutions.

Lab Number, Institution, Location Platform/ Chemistry No. of genes/Fit Gene name

Calibration and
Blind samples
processed

1. IRBBw, Munich, Germany QRT-PCR (TaqMan) 3, Lin, log scale or LQ FDXR, PCNA, DDB2 Together�

2. PHE, Chilton, UK QRT-PCR (TaqMan) 3 Lin, log scale or LQ FDXR, CCNG1 Together
3. FZ, J€ulich, Germany/ FBN,

Dummerstorf, Germany
Microarrays 7, Hierarchical clustering 4,

WB, K-nearest neighbour
FDXR, VWCE, TNFSF4, PHLDA3, LGR6,

DOK7, SPATA18
TNFSF4, FDXR, LGR6, VWCE

Together

2, DB, K-nearest neighbour TNFSF4, FDXR Together
6, WB, LQ TNFSF4, FDXR, DOK7, PHLDA3, LGR6,

SPATA18
Together

6, DB LQ TNFSF4, FDXR, PHLDA3, LGR6,
SPATA18, VWCE

Together

4. SCK CEN, Mol, Belgium Custom QPCR arrays
(SYBR Green)

12, DB
Point-to-point fit

DDB2, MDM2, TNFRSF10B, AEN, XPC,
ZMAT3, FDXR, CCNG1, NDUFAF6,
MAMDC4, PHPT1, TRIAP1

Together

17, WB
Point-to-point fit

DDB2, MDM2, TNFRSF10B, AEN, XPC,
ZMAT3, FDXR, BAX, CCNG1,
ASTN2, NDUFAF6, MAMDC4,
PHPT1, ASCC3, TRIAP1, RPS27L,
GADD45A

Together

5. INCT, Warsaw, Poland QRT-PCR (TaqMan) 8, Exponential fit BAX, BBC3, CDKN1A, DDB2, FDXR,
GADD45A, GDF15, TNFSF4

Together

WB: whole blood; DB: diluted blood.
�for the calibration curves this group used samples sent 3 months earlier and other calibration curves sent together with the blind samples.
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Materials and methods

pH testing of whole blood culture conditions

Peripheral blood from three different donors was drawn into

EDTA tubes. One ml of blood was aliquoted per Greiner

Cryo.sTM 2ml vial tube, allowing for gas exchange. Samples

from the same donor were kept at the same conditions with a

varying time point. Three time-points were tested: 0 h (�3 h

after blood drawing), 2 h (�5 h after blood drawing), 24 h

(�27 h after blood drawing). Three storage conditions were

tested: room temperature (RT), 37 �C incubator without CO2

supply, 37 �C incubator with CO2 supply. At each time-point

one blood sample per condition was centrifuged for 10min at

1500 g at 4 �C. The pH values of plasma were measured imme-

diately after centrifugation using WTW inoLab pH level 1 pH

meter (Weilheim, Germany). All procedures followed were

approved by the local SCK·CEN Ethics Committee and were

carried out in accordance with the ethical standards of the

Helsinki Declaration of 1975, as revised in 2000.

Blood sampling, irradiations and distribution to

participant laboratories

Peripheral blood was taken from one healthy female blood

donor with informed consent and ethical approval from

Berkshire Research Ethics Committee (reference number 09/

HO505/87). The blood sample was collected into an EDTA-

coated tube with one tube per dose. Blood samples were

immediately exposed to a gamma Cobalt 60 source at 37 �C

(MRC, Harwell Campus, UK) with a dose-rate of 0.7Gy/min. The

absorbed doses were measured using TLD for each dose. The

doses for the calibration curve were 0, 0.16, 0.41, 0.70, 1.43

and 2.92Gy while blind samples were exposed to doses 0.44,

1.08, 1.89 and 0Gy and labelled A, B, C and D, respectively.

After irradiation, each sample was split to be cultured in two

different conditions. The whole blood culture conditions con-

sisted of 500 ll whole blood on its own while for the diluted

blood conditions whole blood samples were diluted with an

equal volume of Roswell Park Memorial Institute (RPMI) 1640

medium containing 10% FCS in a T75 flask. Both samples for

each dose were then placed in an incubator at 37 �C for 24h.

At the 24 h time-point, 1ml RNALater (RiboPureTM RNA

Purification Kit, Ambion, Vilnius, Lithuania) was added to the

500 ll whole blood samples while the diluted blood samples

were processed with QIAamp RNA Blood Mini Kit (Qiagen,

Hilden, Germany) up to step 6 of the manufacturer’s proto-

col, (leukocytes lysed in RLT buffer). Both sets of samples

were then placed on ice or frozen until shipment.

Shipment

Blood samples were sent in polystyrene shipment boxes with

cool packs or dry ice by an overnight courier service.

Samples were sent in two lots: (1) Two test samples were

sent from each culture condition (four samples in total); (2)

The calibration samples from the two culture conditions and

blind samples labelled A, B, C and D were sent to each lab

separately. The temperature in the polystyrene box with cold

packs was measured by temperature loggers.

Shipment conditions for whole blood with RNALater

To test storage conditions during transport, blood was drawn

from three different donors and collected into EDTA tubes.

The blood was aliquoted into tubes and one blood sample

from each donor was placed at (1) RT for 24 h, (2)� 20 �C for

24 h, (3) in a polystyrene box with cold packs for 24 h, (4) on

wet ice for 24 h, (5) at �20 �C for 12 h, then in a polystyrene

box with cold packs for 12 h, and (6) in a polystyrene box

with cold packs for 12 h followed by 12 h at �20 �C.

RNA extraction

RNA was extracted from the whole blood samples using the

RiboPureTM RNA Purification Kit (Ambion, Vilnius, Lithuania)

following the manufacturer’s instructions. RNA extraction

from diluted blood samples was performed using QIAamp

RNA Blood Mini Kit (Qiagen, Hilden, Germany) by Labs 1, 2, 3

and 4. Lab 5 used RNeasy Mini Kit (Qiagen, Hilden, Germany)

according to the manufacturer’s protocol. In all labs except

for Lab 3, samples were treated with appropriate DNAse I

reagents provided with the RNA extraction kits. Lab 3 instead

used a Trizol step in the protocol which gives rise to a higher

purity of RNA. Further details of RNA isolation, cDNA synthe-

sis and quantification for Labs 4 and 5 are given in Table 2.

Details for the other labs can be found in Abend et al.

(2016).

Analysis

Analyses of microarrays as well as QRT-PCR assays were per-

formed at the labs according to established protocols

(Table 2). Detailed analysis protocols for Labs 1, 2 and 3 are

described in Abend et al. (2016). DNA microarrays (44 k

whole human genome, G4112F, Agilent) were performed

according to the manufacturer’s protocols and as described

in Knops et al. (2012).

Statistical methods

The precision of reported dose estimates was measured by

calculating the mean of the absolute differences (MAD) of

estimated doses to their corresponding true doses.

Descriptive statistics were calculated in Microsoft Excel or

SAS. The analytical statistics (t-test) were performed using

SAS (v.9.2; SAS Institute Inc., Cary, NC). In the case of unequal

variance, we employed the Satterthwaite method imple-

mented in the SAS procedure called ‘PROC TTEST’. Graphs

were created using Sigma Plot 12.5 (Jandel Scientific, Erkrath,

Germany).

Results

Different conditions of whole blood culture have no

effect on blood pH

Different culture conditions and time-points had no significant

effect on the pH of the blood samples from different donors
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(Table 3). We were therefore able to conclude that there is no

pH associated modification of the white blood cell environ-

ment when storing undiluted whole blood for 24 h.

Shipment conditions for whole blood with RNALater

Upon receipt of the test samples which were sent as a pre-

experiment, all four labs to which the same samples were

shipped, reported that after centrifugation whole blood sam-

ples in RNALater would not separate blood from the

RNALater reagent. Instead, there appeared to be a smearing

of the blood sample throughout the tube as shown in

Figure 1(A) preventing efficient lysis to occur; in contrast nor-

mal centrifugations and separation were obtained for the

blood samples prepared in the lab where no shipment was

involved (Figure 1(B)). In order to further investigate this

issue, an experiment was performed to assess the role of the

shipment conditions at RT, �20 �C and with cold packs for

three blood donors. Results showed that the smearing of the

blood samples appeared in some samples specifically when

stored with cold packs (Figure 1(C)). Although no explanation

was found, it was decided that subsequent blood samples

would be sent frozen on dry ice.

RNA extraction

RNA of sufficient quality and quantity was extracted from all

samples which were sent on dry ice. The total amount of

RNA appeared comparable between labs with the exception

of diluted blood samples from Lab 3 where 4.21 micrograms

of total RNA was extracted on average compared to 1.34,

1.31, 0.92 and 0.75mg for Labs 1, 2, 4 and 5, respectively

(Table 4). Overall, the total amount of RNA recovered was

significantly higher when extracted from whole blood. A 4-

to 6-fold higher amount of RNA was found for whole blood

(mean for all labs, excluding Lab 3: 6.5 ± 3.1 micrograms

[amount for 500 microliters �2]) compared to diluted blood

(mean of 1.1 ± 0.36, excluding Lab 3). These differences were

of statistical significance (p< .0001). In contrast, the RNA

quality as assessed by obtaining RIN values, was significantly

lower in whole blood samples (mean RIN for Labs 1–4 was

6.8 ± 0.4) compared to diluted blood (mean RIN for Labs 1–4

was 8.9 ± 0.8 [p< .0001]).

Dose estimation

Calibration curves were obtained in each lab using their

own curve fit and results for labs using QRT-PCR are shown

Table 2. Methods used by contributing labs.

QRT-PCR

Lab 4: SCK CEN, Mol, Belgium Lab 5: INCT, Warsaw, Poland

RNA isolation
Isolation kit

DB: QIAamp RNA Blood Mini Kit
WB: RiboPureTM RNA Purification Kit

DB: QIAamp RNA Blood Mini Kitþ RNeasy Mini Kit
WB: RiboPure-Blood Kit

DNA digestion during Isolation DB: RNase-free DNase-Set
WB: DNA-freeTM

DB: RNase-free DNase-Set
WB: DNA-freeTM

Template eluted in Quality Control DB: RNAse-free water;
WB: RiboPureTM Elution Solution

DB: RNAse-free water;
WB: RiboPureTM Elution Solution

RNA integrity number Yes No
Concentration Trinean Xpose Quantus fluorometer
A260/280 Yes No
A260/230 Yes No
Check DNA contamination Yes, Human genomic DNA control No
cDNA Synthesis
Kit/MasterMix

RT2 First Strand Kit High Capacity cDNA Reverse Transcription Kit

RT protocol 1�/42 �C/15min, 1�/95 �C/5min 1�/25 �C/10min, 1�/37 �C/120min,1�/85 �C/5min
Quality Control Reverse transcription control ITFG1-CT, DPM1-CT
QRT-PCR
Kit/MasterMix

RT2 SYBRVR Green qPCR Mastermix TaqMan Universal Master Mix II, no UNG

fp/rp/probe Custom RT2 Profiler PCR Array BAX, BBC3, CDKN1A, DDB2, DPM1, FDXR, GADD45A,
interrogating 29 genes (including 4 HKG). GDF15, ITFG1, TNFSF4

Cycles 1�/95 �C/10min, 40x/95 �C/15s&60 �C/1min 1�/95 �C/10min, 40x/95 �C/15s&60 �C/1min
Detection system Applied Biosystems 7500 Fast Real-Time PCR System 7500 Real-Time PCR System, AB
Fixed/variable threshold Manual fixed Fixed
Normalization HPRT1, PGK1, GAPDH, B2M ITFG1, DPM1
Quantification method Average DCt Nonlinear regression model based on the sum of DCt
Quality Control
Standard curve No No
Slope No No
r
2 No No
18SrRNA-CT HPRT1, positive PCR control ITFG1-CT, DPM1-CT, NTC

WB: whole blood; DB: diluted blood.

Table 3. pH levels in whole blood from three donors at
varying time-points and conditions.

Donor Time/condition pH

Donor 1 0 h/RT 7.4
2 h/RT 7.4
24 h/RT 7.5

Donor 2 0 h/37�þCO2 7.5
2 h/37�þCO2 7.6
24 h/37�þCO2 7.4

Donor 3 0 h/37�-CO2 7.5
2 h/37�-CO2 7.5
24 h/37�-CO2 7.6
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in Figure 2. Calibration curves for QRT-PCR labs, obtained

with diluted blood are shown on the left panels and those

obtained with whole blood on the right panels, apart from

Lab 5 where both diluted and whole blood is shown on the

same panel (Figure 2(G)). Overall, the shapes of the calibra-

tion curves are comparable between whole blood and

diluted blood. Intra-laboratory differences are evident

between genes. For example, Lab 1 (Figure 2(A) and (B))

used different calibration curve fits, depending on which

best suited each gene. The best fits for the two genes FDXR

and CCNG1 used in Lab 2 (Figure 2(C) and (D)) are different

although they were analyzed simultaneously in a multiplex

QRT-PCR assay, hence highlighting the gene specificity of the

response to radiation. The fits are therefore gene-dependent

and are not affected by the blood culturing conditions. With

regards to the difference in expression between whole and

diluted blood, the difference can be seen in particular in

Lab 4 (Figure 2(E) and (F)) and is perhaps most evident in

Lab 5 (Figure 2(G)) where the genes are expressed at a

higher Ct level in the whole blood samples. The shapes of

the calibration curves are very similar for Lab 4 but it is the

Ct values that differ, e.g. for MDM2 0Gy starting at 6 Ct for

diluted blood and 8 Ct for whole blood (Figure 2(E) and (F))

(Supplementary Table 1, available online). The different blood

preservation methods therefore seem to affect baseline

expression levels, although the relative expression in

response to radiation remains was overall very similar.

In Figure 3, calibration curves derived from whole and

diluted blood are shown for each of the two genes analyzed

in Lab 2. For FDXR (Figure 3(A)) the best fit is obtained using

a log fit, while a linear quadratic was the best for CCNG1

(Figure 3(B)). Coefficients of determination of the calibration

curves were 0.98 and 0.96 for FDXR, and 0.87 and 0.83 for

CCNG1 for diluted blood and whole blood, respectively. The

normalized absolute gene expression values are on average

slightly higher for diluted blood and this is more pronounced

for FDXR. The normalized gene expression values were plot-

ted versus the true doses of the four blinded samples for

whole blood (white stars and squares) and diluted blood

(filled triangles) and do show a general good fit with the cor-

responding calibration curves. For CCNG1, the dose assess-

ment in the 0–1Gy range is accurate (normalized gene

expression of 6.14 [0 Gy] 14.90 [0.44 Gy] and 23.60 [1.08 Gy],

respectively) but for higher doses, due to the shape of the

calibration curve, estimating the dose accurately becomes

problematic as doses of 1.08 and 1.89Gy could not be discri-

minated (normalized gene expression of 23.60 and 23.64,

respectively). This issue highlights the need for further opti-

mization of gene expression and also the continued search

for novel gene biomarkers which may be useful for covering

a range of doses, dose-rates and time-points. Importantly, it

should be noted that the data presented here were obtained

with blood samples exposed ex vivo and it remains to be

seen if the same would apply in vivo as it is possible that

the plateau phase observed may be due to the experimental

conditions and that it may not be detected in vivo. This is

also true for FDXR but to a lower extent as normalized gene

expression shows a better dose dependency (normalized

gene expression of 0.72, 3.28, 6.50, 6.72 for diluted blood

and 0.2, 1.66, 3.23 and 4.21 for whole blood corresponding

to doses of 0, 0.44, 1.08 and 1.89Gy, respectively). This is

reflected in Table 5 where, although the whole blood MAD

values for both genes are slightly lower (0.2 for whole blood

versus 0.3 for diluted blood), no reported dose estimate is

out by more than 0.5 Gy for whole blood as compared to

diluted blood where doses of 2 and 2.1 were reported (true

dose of 1.08Gy) for FDXR and CCNG1, respectively. Statistical

analysis of dose estimates based on diluted versus whole

blood did not show significant differences in mean values for

true doses such as 0Gy (p¼ .3), 0.4 Gy (p¼ .1) and 1.9 Gy

(p¼ .2). However, mean values at the true dose of 1.1 Gy dif-

fered significantly between dose estimates derived from

diluted (1.6 Gy) and whole blood (0.9 Gy, p¼ .0007). These

significant differences were observed in all labs analyzed and

were not observed at true doses of 1.9 Gy (data not shown).

Results presented in Table 5 summarize the experimental

data generated in the five participating labs obtained by

either QRT-PCR or microarrays. Dose estimates from the QRT-

PCR labs were either provided for a single gene or for a com-

bination of 12 (diluted blood) and 17 (whole blood) genes

(Lab 4), or 8 (Lab 5) genes (Table 5). For Lab 4, MAD values

(A)

Storage   

condition

Donor 1 Donor 2 Donor 3

RT 24 h Separation Separation Separation

-20°C 24 h Separation Separation Separation

Cold packs 24 h No 

Separation

Separation Separation

Wet ice 24 h Separation Separation Separation

-20°C 12 h→

cold packs 12 h

No 

Separation

Separation Separation

Cold packs 12 h

→ -20°C 12 h

No 

Separation

Separation Separation

(C)

(B)

Figure 1. Different shipment conditions of whole blood with RNALater.
(A) Whole blood with RNALater after centrifugation for 1min without shipment.
(B) Whole blood with RNALater after centrifugation for 1min after shipment on
wet ice. (C) Centrifugation results of whole blood with RNALater samples from
three donors at varying storage conditions.
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for a gene signature should only be reflected by one dose

estimate and not for each gene, it was decided to also show

the dose estimates per gene as this reflects the robustness of

the gene expression approach. Lab 1 also performed the

dose estimation using calibration curve samples which were

prepared and sent 3 months earlier which provided very

similar dose estimates to the calibration curve prepared and

used on the same day. It is very useful to know that previ-

ously prepared calibration curves can still provide accurate

dose estimates months after preparation. The precision of

dose estimates using one gene only (e.g. FDXR), as illustrated

for Lab 1 and 2, proved to be as precise as dose estimates

based on up to eight or 17 genes, which were used by Labs

4 and 5. Overall, the 1.1 Gy blinded sample was less well esti-

mated across all contrilaboratories, an effect which was not

observed at higher true dose of 1.9 Gy. Although there is no

identified reason for this, it cannot be excluded that some-

thing happened to this tube during handling and/or irradi-

ation or that it is approaching the upper limit of detection

for gene expression (Abend et al. 2016).

The microarray approach employed (1) hierarchical cluster-

ing, (2) KNN-based dose assessments, and finally (3) dose esti-

mates based on calibration curves of several genes shown in

Figure 4. Hierarchical clustering revealed that all irradiated

whole blood samples resembled more to each other than the

irradiated diluted samples (Figure 4(A)). This strongly suggests

that a large difference exists in the response in terms of gene

expression due to sample preparation. Furthermore, all irradi-

ated samples were more closely related to each other, i.e.

showed more similarities than to their respective control/

non-irradiated sample, irrespective of sample preparation.

Therefore, both blinded D samples were correctly classified as

non-irradiated samples (0Gy) (Figure 4(A) and Table 5).

Figure 4(B), illustrates the applied KNN approach using the

gene expression of the signature genes TNFSF4 and FDXR.

The gene combinations with the highest predictive power,

i.e. the genes TNFSF4, FDXR, LGR6, VWCE for whole blood

samples (four genes) and the genes TNFSF4, FDXR for diluted

blood samples (two genes) classified the test samples A–D

with good precision. The 0.4 Gy-irradiated sample B was clas-

sified as irradiated with 0.5 Gy (diluted blood) and 1Gy

(whole blood) whereas the 1.1 Gy-irradiated sample C was

classified as irradiated with 2Gy for diluted blood, respect-

ively, 1 Gy for whole blood. The 1.9 Gy-irradiated sample D

was correctly classified as a 2Gy-irradiated sample, irrespect-

ive of sample preparation (Table 5). All non-irradiated sam-

ples were correctly classified as unirradiated controls by the

KNN method. Overall, the obtained dose estimations

obtained by KNN classification were very satisfying keeping

in mind that the classification is not based on the calibration

sample data but on microarray data from 2008–2011 derived

from cultured peripheral blood lymphocytes from six non-

related blood donors (for more detail, see Boldt et al. 2012).

The dose estimates derived by regression curve analysis

(Figure 4(C), (D)) from the three most predictive gene combi-

nations for each culture condition were very similar to each

other (Lab 5, regression analysis; Table 5). Moreover, the radi-

ation doses of all whole blood test samples were assessed

with a very good accuracy, irrespective of the used gene

combinations for the dose assessment. The radiation dose

allocation for whole blood samples based on TNFSF4, FDXR

and DOK7 showed a deviation of only 0.1 Gy for two of the

Table 4. Laboratory intercomparison of RNA quality and quantity.

Lab 1 Lab 2 Lab 3 Lab 4 Lab 5

Dose (Gy) Total RNA (ug) RINa Total RNA (ug) RINa Total RNA (ug) RINa Total RNA (ug) RINa Total RNA (ug) RINa

Diluted Blood 1ml 0 1.3 9.9 1.4 9.1 4.3 7.7 1.2 8.8 0.7 N/A
0.16 1.7 9.9 1.3 9.1 5.6 8.3 1.3 9.3 0.6 N/A
0.41 1.7 9.6 1.7 9.2 5.5 8.2 1.2 9.0 0.8 N/A
0.7 1.7 9.8 1.6 9.3 6.1 7.5 1.1 9.0 1.0 N/A
1.43 1.2 9.6 1.6 9.3 4.7 7.0 0.9 8.7 1.0 N/A
2.92 1.5 9.4 1.3 9.3 4.5 7.5 0.8 8.6 0.8 N/A

Blind A 1.2 10.0 1.1 9.2 2.6 8.1 0.9 9.1 0.8 N/A
Blind B 1.1 10.0 1.0 9.2 2.8 8.3 0.6 8.8 0.9 N/A
Blind C 0.9 9.8 1.1 9.4 2.6 7.7 0.5 9.1 0.1 N/A
Blind D 1.1 10.0 1.0 9.2 3.4 7.5 0.7 8.5 0.8 N/A

Diluted Blood 1ml 0 1.4 9.5
(25.11.2015) 0.25 1.2 9.6

0.5 1.0 9.3
1 0.8 9.8
2 0.9 9.7
3 0.7 9.9
4 0.7 8.8

Whole Blood 1ml� 0 11.0 6.7 3.3 6.2 6.8 7.1 10.3 7.2 4.6 N/A
0.16 10.8 6.5 5.9 6.5 8.9 5.3 6.5 7.2 4.8 N/A
0.41 5.5 6.9 5.9 6.5 8.6 6.8 9.1 7.1 5.0 N/A
0.7 10.4 6.5 4.9 6.5 10.2 6.7 7.1 7.1 4.8 N/A
1.43 12.0 6.5 6.0 6.5 7.3 6.8 7.4 6.9 5.0 N/A
2.92 12.7 6.5 5.1 6.5 8.6 7.2 6.6 7.0 3.4 N/A

Blind A 12.8 6.4 4.1 6.8 5.3 6.9 3.8 7.5 2.6 N/A
Blind B 11.0 6.5 5.3 6.8 6.6 7.1 4.3 7.2 2.9 N/A
Blind C 11.7 6.5 3.8 6.7 6.2 7.2 4.0 7.4 3.6 N/A
Blind D 11.7 6.5 4.2 6.8 4.5 6.9 4.8 7.6 3.1 N/A

RIN: RNA integrity number.
�Original volume of 500ul was sent to each lab for analysis. RNA (ug) is calculated per 1ml for comparison.
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four samples and allocated the dose for the other two sam-

ples correctly. The radiation dose for three of the diluted

blood samples was also assessed with good accuracy

(�0.5 Gy), while the radiation dose to the diluted blood

sample B was overestimated by >1Gy, irrespective of the

used gene combination.

When analyzing the results of all five labs together, the

mean MAD were comparable for diluted and whole blood,
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0.38 (SEM¼ 0.06) and 0.36 (SEM¼ 0.05), respectively, and dif-

fered not significantly (p¼ 0.9). The average number of dose

estimates out of ±0.5 was following the same trend, 1.3

(±0.1) for diluted blood and 1.2 (±0.2) for whole blood

(p¼ 0.6). All labs were able to identify the 0Gy blinded sam-

ple as unirradiated, except for Lab 5 which provided a dose

estimate of 0.1 Gy for the whole blood 0Gy sample. The

most precise dose estimate for an irradiated sample was

given for the 0.4 Gy sample which, similarly to our previous

exercise, again shows that the most accurate dose estimates

are given in the linear phase of the calibration curve of

<1Gy (Abend et al. 2016). Also, precision of dose estimates

based on one gene only (e.g. FDXR with MAD¼ 0.3–0.4 Gy in

different labs) appeared as good as employing gene signa-

tures consisting of up to 17 genes.

Discussion

Monitoring specific gene expression modifications in

response to an exposure to ionising radiation is emerging as

a promising method for biological dosimetry purposes.

However further work is required to learn more about poten-

tial technical issues and to further assess the robustness of

dose estimates by continuing organising inter-laboratory

comparisons. One main purpose of this study was to assess

the potential of using undiluted whole blood as a simple

alternative to blood preservation by medium dilution. This is

an attractive alternative as it is simple and would prevent

potential gene expression variability introduced after dilution.

In order to compare undiluted whole blood with blood

diluted with medium we first verified that whole blood could

be kept for 24 h without pH variations. We observed that pH

values of ex vivo blood kept at 37 �C over a period of 24 h

remained unchanged.

As this was an inter-laboratory comparison, whole blood

and diluted blood samples prepared at PHE had to be dis-

patched to the other four participating labs. During the pilot

experiment, we unexpectedly found out that the shipment of

whole blood in RNALater on wet ice resulted in what was

described as a smearing/clotting of the blood samples pre-

venting the removal of RNALater by centrifugation in the first

step of RNA extraction. This was problematic as RNA extrac-

tion proved almost impossible with very low yields recov-

ered. This whole blood sample clotting was reported in all

four labs which received shipped samples. After investigation

of different shipment temperatures, it appeared that clotting

only occurred when the samples were stored with cold

packs. Interestingly, it seemed that sample clotting was

donor-dependent, although this would require further con-

firmation. One hypothesis is that low temperatures and pres-

sure differences experienced during the flight may cause a

precipitation of the salts and lysis of the cells in the

RNALater solution, as results from the temperature loggers

revealed that the temperatures in the polystyrene shipment

box ranged from 22.5 to �3.5 �C (data not shown) during

shipment with cold packs. This smearing of samples was also

apparent after transportation at RT, which is why we decided

to ship samples frozen for the remainder of the exercise. Yet,

in the case of a large scale nuclear accident, issues such as

the availability of dry ice and the cost of shipping parcels

with dry ice could prove problematic. The purpose of send-

ing the blood samples mixed with RNALater is that for sam-

ples collected after in vivo exposure, it is a cheap and simple

alternative to PAXgene tubes. In the case of a nuclear inci-

dent, where potentially thousands of samples would have to

be collected in a short period of time, obtaining such a large

number of tubes might prove to be problematic as they

have a relatively short shelf-life (6 months) and a stock would

have to be periodically renewed which comes at a cost.

Therefore preserving blood RNA in a simple step by adding

RNALater before shipping at RT was an attractive alternative

protocol worth investigating. The fact that it does not seem

to be compatible with being shipped by aeroplane in liquid

form was an unexpected result.

A clear difference in RNA quantity and quality was seen

between whole blood preserved with RNALater and RNA

extraction performed with the Ribopure kit in comparison

with whole blood diluted with medium and RNA extracted

with the QIAamp kit. The Ribopure kit produced a higher

quantity of RNA but it was of lower quality with RINs ranging

between 5.3 and 7.6. While the QIAamp kit produced lower,

yet sufficient quantities of RNA, the quality was consistently

high with RINs of 9–10. However, it is unclear whether the

differences are due to the culture conditions or the extrac-

tion kits as each kit is designed to be suited for the different

culture condition. Although there was a noticeable difference
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Figure 3. Normalized expression values of FDXR (A, log fit) and CCNG1 (B, lin-
ear-quadratic fit) from calibration (0, 0.16, 0.41, 0.70, 1.43 and 2.92 Gy) and
blind (0, 0.44, 1.08 and 1.89 Gy) samples. Irradiation occurred either in diluted
blood (filled in shapes) or whole blood (not filled in shapes) samples.
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between the methods in the RIN values they provided, no

degradation of RNA was evident in either method and all

were of sufficient quality. Although mRNA degradation is a

potential issue, it appears that all samples analyzed in the

present study were of sufficiently good quality to provide

reliable and comparable results. The RNA isolated using both

methods was still of sufficient quantity and quality for each

downstream application. It is nevertheless worth keeping in

mind that the amount of RNA extracted from whole blood

preserved in RNALater is 4- to 6-fold higher, which might be

important in case of limited volume of blood being available.

Overall, both the 1.1 Gy and 1.9Gy samples had the most

dose estimates which fell into the ±0.5 Gy uncertainty inter-

val. This appears to be a limitation of gene expression which

has been previously seen in Manning et al. where the calibra-

tion curves appear to plateau at higher doses (�1Gy)

(Manning et al. 2013). Although this issue is also encountered

during established biodosimetry techniques, it generally

occurs at a much higher dose of about 5 Gy (International

Atomic Energy Agency [IAEA] 2011). During a radiation acci-

dent, people are usually exposed to doses of less than 1Gy

(IAEA), the doses at which gene expression is most accurate

Table 5. Reported dose estimates from labs running QRT-PCR or microarrays for each of the samples irradiated with a known (true) dose.

True dose for each

sample (Gy)
MAD

(Gy)

No. of

measurements

out of ±0.5 Gy

True dose for each

sample (Gy)
MAD

(Gy)

No. of

measurements

out of ±0.5 Gy0.0 0.4 1.1 1.9 0.0 0.4 1.1 1.9

Diluted blood Whole blood

Approach: curve fit/gene(s) reported dose estimates (Gy) reported dose estimates (Gy)

Lab 1 Calibration curve, same day

FDXR 0.0 0.6 0.8 1.2 0.3 1 0.0 0.5 0.4 1.3 0.4 2

PCNA 0.0 1.0 1.1 1.4 0.3 2 0.0 0.5 0.1 1.1 0.5 2

DDB2 0.0 0.9 1.0 1.0 0.4 2 0.0 0.5 0.3 0.7 0.5 2

Calibration curve, 3 month earlier

FDXR 0.0 0.4 0.6 0.9 0.4 2

PCNA 0.0 0.8 0.9 1.4 0.3 0

DDB2 0.0 1.2 1.2 1.2 0.4 2

Lab 2 log FDXR 0.0 0.4 2.0 2.1 0.3 1 0.0 0.3 1.3 2.3 0.2 0

LQ CCNG1 0.0 0.6 2.1 2.1 0.3 1 0.0 0.8 1.2 1.7 0.2 0

Lab 3 Hierarchical clustering 0.0 0.2 0.1 0 0.0 0.4 1.4 2.9 0.3 1

Regression analysis

6 (6) genes 0.0 0.8 2.5 2.4 0.6 1 0.0 0.8 1.4 2.1 0.2 0

4 (5) genes 0.0 0.7 2.5 2.3 0.5 1 0.0 0.5 1.3 2.0 0.1 0

2 (3) genes 0.0 0.5 2.3 2.4 0.4 1 0.0 0.5 1.2 1.9 0.1 0

K-nearest neighbour

7 genes 0.0 1.0 2.0 2.0 0.4 2 0.0 0.5 0.5 1.0 0.4 2

5 genes 0.0 1.0 2.0 2.0 0.4 2 0.0 0.5 1.0 1.0 0.3 1

4 genes 0.0 1.0 2.0 2.0 0.4 2 0.0 1.0 1.0 2.0 0.2 1

3 genes (V1) 0.0 0.5 2.0 2.0 0.3 1 0.0 1.0 1.0 2.0 0.2 1

3 genes (V2) 0.0 0.5 1.0 1.0 0.3 1 0.0 0.0 0.0 0.5 0.7 2

2 genes 0.0 0.5 2.0 2.0 0.3 1 0.0 0.0 0.5 0.5 0.6 2

Lab 4 DDB2 0.0 0.4 1.2 2.5 0.2 1 0.0 0.2 2.9 2.9 0.8 2

MDM2 0.2 0.4 2.6 2.9 0.7 2 0.1 0.4 1.8 2.9 0.4 2

TNFRSF10B 0.0 1.7 1.9 2.9 0.8 3 0.1 0.2 0.4 2.9 0.5 2

AEN 0.0 0.4 1.2 2.9 0.3 1 0.1 1.1 2.9 2.9 0.9 3

XPC 0.0 0.4 1.5 2.1 0.1 0 0.0 0.2 2.9 2.9 0.8 2

ZMAT3 0.0 0.4 1.4 1.4 0.2 1 0.1 0.2 0.4 2.9 0.5 2

FDXR 0.0 0.6 1.3 2.9 0.4 1 0.1 0.9 2.9 2.9 0.9 3

CCNG1 0.0 0.4 0.3 2.4 0.3 2 0.0 0.6 0.7 2.9 0.4 1

NDUFAF6 0.0 0.8 2.9 2.9 0.8 2 0.1 1.0 2.9 1.1 0.8 3

MAMDC4 0.0 1.0 1.7 2.5 0.5 3 0.1 0.4 2.9 2.9 0.7 2

PHPT1 0.0 0.7 1.4 1.6 0.2 0 0.0 1.2 2.9 2.9 0.9 3

TRIAP1 0.0 0.4 0.4 2.2 0.2 1 0.1 0.4 2.9 2.9 0.7 2

BAX 0.1 0.8 1.3 2.9 0.4 1

ASTN2 0.1 0.4 1.3 2.5 0.2 1

ASCC3 0.0 0.1 0.3 2.9 0.5 2

RPS27L 0.1 2.9 2.9 2.9 1.4 3

GADD45A 0.1 0.1 1.1 2.9 0.3 1

Integrated over 12 (17) genes 0.0 0.6 1.5 2.4 0.3 0 0.0 0.7 2.0 2.8 0.5 2

Lab 5 Integrated over 8 genes 0.0 0.5 1.1 5.6 0.9 1 0.1 0.2 0.5 0.9 0.5 2

Mean 0.38 1.3 Mean 0.36 1.2

SEM 0.06 0.1 SEM 0.05 0.2

Numbers in bold refer to values used for descriptive statistics (mean and SEM calculation) at the end of the column. Underlines numbers represent values lying
outside the 0.5 Gy interval.
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(Abend et al. 2016). Therefore, this technique, with its fast

report time, is still a useful tool in biodosimetry. The doses

for the unknown samples were chosen with this issue in

mind with a control sample, a dose below 1Gy, a dose

around 1Gy and a dose above 1Gy. These doses investigate

the accuracy in determining a dose estimate for an unex-

posed individual, an individual exposed to a low dose and

two further higher doses which will test the limit of detection

for gene expression.

Some labs used a gene signature for providing dose esti-

mates while others used single genes like FDXR. According to

the data presented, gene signatures performed in a compar-

able way to a single gene approach. This is illustrated by the

consistency in dose estimation across labs. However, gene

signatures provide more robustness due to redundancy and

it is unlikely that a single gene might represent a specific

enough response to ionizing radiation independent of the

time after exposure and potential confounding factors, such

as smoking, gender, chronic irradiation or inflammation. The

use of one female donor for this experiment does introduce

the issue of variability among male and female blood donors.

Previous experiments have found donor sex to be an influ-

encing factor (Kim et al. 2007) and use of a female blood

donor may introduce bias. The focus of this experiment how-

ever, is on blood storage and preparation issues. In order to

prevent variabilities being introduced from other factors, one

donor was used. Donor variability and variability among male

and females has been previously addressed in human blood

Figure 4. Microarray dose estimation approach. (A) K nearest neighbour classification based on the two radiation responsive genes FDXR and TNFSF4. For each test
sample (whole blood sample A–D and diluted blood sample A–D) the three nearest training samples with known radiation doses (0–4 Gy) were determined.
Afterwards, the test sample was assigned to the most frequent radiation dose among its three nearest neighbours. The training samples were derived from ex-situ
irradiated blood from six non-related healthy donors (three males and three females of three age classes; Boldt et al. 2012). Gene expression of FDXR and TNFSF4

are given as Log2 values. (B) Hierarchical clustering of calibration samples and test samples. The heat-map illustrates the radiation-induced expression changes of
the seven signature genes of Lab 3 (Boldt et al. 2012). The hierarchical clustering of the samples (columns) reveals that non-irradiated samples can be easily discri-
minated from irradiated samples (0.16–2.92 Gy). Also, all irradiated whole blood samples as well as all irradiated diluted blood samples form a separate cluster, indi-
cating that sample treatment influences significantly the gene expression response of the signature genes in the irradiated samples. Log2 gene expression values
obtained by DNA microarray analysis are colored from red (low) to white (high). (C, D) Regression curves of the signature genes used for dose assessment in Lab 3.
C – whole blood samples; D – diluted blood samples. Gene expression is given as Log2 value.
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(Manning et al. 2013), although it is unlikely that blood gen-

der would affect blood storage and preparation issues, it is a

question that may need to be further investigated on a

larger scale. Also, the participating labs used their own meth-

ods and data analysis techniques, namely KNN, hierarchical

clustering, use of calibration curves derived from single

genes or genes combined which provided comparable MADs

relative to the true doses and a similar number of out of

range (>0.5 Gy) measurements.

Hierarchical clustering of seven radiation-responsive genes

(Boldt et al. 2012) from microarray results revealed that non-

irradiated samples are very different from irradiated samples,

irrespective of sample preparation (Figure 4(A)). Hierarchical

clustering has previously proven to be very accurate in sepa-

rating irradiated from non-irradiated samples, even at very

low radiation doses such as 20mGy (Knops et al. 2012).

However, sample preparation seems to affect irradiated sam-

ples in a general way. Whole blood samples resemble each

other more in terms of gene expression, irrespective of dose,

than diluted blood samples (Figure 4(B)). This indicates that

the sample preparation influences the gene expression

response after irradiation, at least in the seven genes used

for the clustering approach. This might also indicate that

some factors in the respective solutions interfere substantially

with the radiation damage response of peripheral white

blood cells.

It has been reported many times that the quantification of

gene expression in response to radiation exposure by micro-

array technology is robust and reliable (Paul & Amundson

2008; Boldt et al. 2012; Knops et al. 2012), and the obtained

gene signatures derived in ex situ irradiated blood are shown

to be predictive for the radiation dose in vitro as well as in

vivo (Paul et al. 2011). The gene signature developed by

Boldt et al. (2012) was reported to be robust in terms of

dose prediction. In the current study the KNN approach was

used to predict the radiation dose of the calibration curve

samples as well as of the test samples by comparing them to

this existing data set derived from six healthy non-related

donors. As shown in Figure 4(B), this approach results in a

good accuracy for radiation dose prediction. This is of major

importance because it shows that a satisfying dose classifica-

tion of blood from a non-related donor, either prepared as

whole or diluted blood, is feasible using the independent

gene expression data of six non-related donors. This points

out to an inherent robustness of the seven gene signature

by Boldt et al. (2012). The overall achieved accuracy of the

dose estimates by the KNN methodology is very similar to

the results reported in Abend et al. (2016) by the same

authors.

To summarize the RENEB II exercise, we can conclude that

the data presented here demonstrate that the dose estimates

are always comparable, irrespective of the approach chosen

by the participating labs. Overall, for in vitro studies, we can

conclude that labs can use their favorite protocol for preserv-

ing blood during incubation times as this does not affect the

dose estimates. Dose estimates obtained from diluted or

whole blood are also absolutely comparable. For in vivo stud-

ies, whole blood preserved in RNALater is a cheap and sim-

ple alternative which may be considered for large sample

size analyses. However, calibration curves using different

blood preservation methods are not interchangeable as illus-

trated by the different basal levels of expression between

whole and diluted blood calibration curves. Finally, we

showed that a calibration curve prepared 3 months previ-

ously can be successfully used to provide comparable dose

estimates as the calibration curve generated specifically for

RENEB II (Table 5).

In conclusion, this study brought new data drawing

important conclusions which will be beneficial to future stud-

ies. We are continuing to progress with the learning process

of using gene expression for biological dosimetry purposes

and it continues to show great promise as a method for

accurate and rapid assessment of radiation exposure.
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